
Compiling SpectMorph
To compile and install SpectMorph, you need libbse >= 0.7.2 – this library is part of BEAST; 
however there is no beast-0.7.2 release yet, so you will have to build BEAST from git (instructions 
can be found on http://beast.gtk.org/download). Distribution packages should be available for most 
other dependancies, with the exception that boost-numeric-bindings might be missing. It can be 
found here: http://mathema.tician.de/software/boost-numeric-bindings

What is SpectMorph?
SpectMorph is a collection of algorithms capable of creating new sounds from existing sounds. To 
do this, SpectMorph allows transforming sounds into a general model. Harmonic sounds such as the 
sound of one note of a piano or one note of a flute are good input data for the „encoder“ which 
builds a parametric model of the sound.

Right now (possibly this will change in future versions), the model consists of many successive 
frames (also called AudioBlocks in the source code), which contain two components:

● a weighted sum of sines of different frequencies – this models the harmonic part of the 
sound

● an envelope describing the rest of the frame (after subtraction of the sines) as noise

Once a model has been built, algorithms can use the models as a base for creating new sounds. 
Right now only the encoder and player are implemented, effectively limiting SpectMorph to 
recreating sounds that were already provided as input; so nothing additional is gained this way. 
However, using smenc and smplay can help debugging the encoder/decoder, this is one of the goals 
of SpectMorph development right now.

Building a model with smenc

Assuming that you have a wave file of a piano called piano.wav

$ smenc piano.wav piano.sm

will build a model from the sample. Please refer to the smenc manual page for details about the 
options that can be used. Commonly -O level and -m midi-note can be used, for instance like this:

$ smenc -O1 -m 24 piano.wav piano.sm

Resynthesis from a model
$ smplay piano.sm

will play the model. The options are documented in the smplay manual page.

Visualizing a model
$ smvisualize piano.sm piano.png db

will produce a png in which the original fft analysis data (black/white) will be drawn, as well as the 
partials used by the model (red). Some more information is available in the smvisualize manual 
page.

http://beast.gtk.org/download
http://mathema.tician.de/software/boost-numeric-bindings


Building Instruments

Often musical instruments sound very different, depending on the note being played. For instance 
while a piano C4 sounds similar to the C#4 note on the same piano, the C1 or C8 notes sound very 
different. SpectMorph instruments allow including more than one model into the instrument file, 
and store which midi note corresponds to which model. The first step for building an instrument is 
initializing a new wavset, to store the instrument models:

$ smwavset init piano.smset

Then, a number of already encoded files can be added, and the midi note to which each file 
corresponds can be specified. Its useful to strip the .sm-files before adding them, using smstrip (this 
reduces the file size a lot).

$ smstrip c2.sm c3.sm c4.sm
$ smwavset add piano.smset 36 c2.sm
$ smwavset add piano.smset 48 c3.sm
$ smwavset add piano.smset 60 c4.sm

The final step is to link the instrument – this will copy all files into the smset, so that only this file is 
needed to use the instrument.

$ smwavset link piano.smset

Testing instruments:

There are two ways of testing instruments: the first is the BEAST plugin. All you need to do is 
create a SpectMorph Oscillator, and set its filename property to the full path of the smset. You 
should also connect its frequency input. The plugin works the same way like the BEAST wave osc 
plugin, and can be used to build instruments for songs or for live usage.

The other way to test instruments is using the JACK client. It takes an smset as argument, so 
starting

$ smjack piano.smset

should be all that is necessary – of course you have to connect the midi input and the audio output 
of smjack using qjackctl (or something similar).

The live decoder is not yet optimized for performance, so only a few simultaneous notes can be 
played using these methods. 

Comments/Questions:

stefan@space.twc.de


	Compiling SpectMorph
	What is SpectMorph?
	Building a model with smenc
	Resynthesis from a model
	Visualizing a model
	Building Instruments
	Testing instruments:
	Comments/Questions:


